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Biochemistry: Concepts and Connections
As genomics and informatics revolutionize biomedical  science and 
health care, we must prepare students for the chal lenges of the twenty-
first century and ensure their ability to apply quantitative  reasoning 
skills to the science most fundamental to medicine: biochemistry.

We have written Biochemistry: Concepts and Connections to provide 
students with a clear understanding of the chemical logic underlying 
the mechanisms, pathways, and processes in living cells. The title re-
inforces our vision for this book—twin emphases upon fundamental 
concepts at the expense of lengthy descriptive information, and upon 
connections, showing how biochemistry relates to all other life sci-
ences and to practical applications in medicine, agricultural sciences, 
environmental sciences, and forensics.

Inspired by our experience as authors of the biochemistry  majors’ 
text, Biochemistry, Fourth Edition, and as teachers of biochemistry 
 majors’ and mixed-science-majors’ courses, we believe there are  several 
requirements that a textbook for the mixed-majors’ course must address:

• The need for students to understand the structure and function of 
biological molecules before moving into metabolism and dynamic 
aspects of biochemistry.

• The need for students to understand that biochemical concepts 
derive from experimental evidence, meaning that the principles 
of biochemical techniques must be presented to the greatest ex-
tent possible.

• The need for students to encounter many and diverse real-world 
applications of biochemical concepts.

• The need for students to understand the quantitative basis for 
biochemical concepts. The Henderson–Hasselbalch equation, 
the quantitative expressions of thermodynamic laws, and the 
 Michaelis–Menten equation, for example, are not equations to be 
memorized and forgotten when the course moves on. The basis 
for these and other quantitative statements must be understood 
and constantly repeated as biochemical concepts, such as mecha-
nisms of enzyme action, are developed. They are essential to help 
students grasp the concepts.

In designing Biochemistry: Concepts and Connections, we have 
stayed with the organization that serves us well in our own classroom 
experience. The first 10 chapters cover structure and function of bio-
logical molecules, the next 10 deal with intermediary metabolism, and 
the final 6 with genetic biochemistry. Our emphasis on biochemistry 
as a quantitative science can be seen in Chapters 2 and 3, where we 
focus on water, the matrix of life, and bioenergetics. Chapter 4 intro-
duces nucleic acid structure, with a brief introduction to nucleic acid 
and protein synthesis—topics covered in much more detail at the end 
of the book.

Chapters 11 through 20 deal primarily with intermediary metab-
olism. We cover the major topics in carbohydrate metabolism, lipid 
metabolism, and amino acid metabolism in one chapter each (12, 16, 
and 18, respectively). Our treatment of cell signaling is a bit uncon-
ventional, since it appears in Chapter 20, well after we present hor-
monal control of carbohydrate and lipid metabolism. However, this 
treatment allows more extended presentation of receptors, G proteins, 
oncogenes, and neurotransmission. In addition, because cancer often 
results from aberrant signaling processes, our placement of the sig-
naling chapter leads fairly naturally into genetic biochemistry, which 
follows, beginning in Chapter 21.

With assistance from talented artists, we have built a compelling 
visual narrative from the ground up, composed of a wide range of 
graphic representations, from macromolecules to cellular structures as 
well as reaction mechanisms and metabolic pathways that highlights 
and reinforces overarching themes (chemical logic, regulation, inter-
face between chemistry and biology). In addition, novel  Foundation 
Figures integrate core chemical and biological  connections visually, 
providing a way to organize the complex and detailed material intel-
lectually, thus making relationships among key concepts clear and 
easier to study. “Concept” and “Connection” statements within the 
narrative highlight fundamental concepts and real-world applications 
of biochemistry.

In Biochemistry: Concepts and Connections, we emphasize our field 
as an experimental science by including 15 separate sections, called 
Tools of Biochemistry, that highlight the most important research 
techniques. We also provide students with end-of-chapter references 
(about 12 per chapter), choosing those that would be most appropriate 
for our target audience, such as links to Nobel Prize lectures.

We consider end-of-chapter problems to be an indispensable 
learning tool and have provided 15 to 25 problems for each chapter. 
About half of the problems have brief answers at the end of the book, 
with complete answers provided in a separate solutions manual. Addi-
tional tutorials in MasteringChemistry® will help students with some 
of the most basic concepts and operations.

Producing a book of this magnitude involves the efforts of dedi-
cated editorial and production teams. We have not had the pleasure of 
meeting all of these talented individuals, but we consider them close 
friends nonetheless. First, of course, is Jeanne Zalesky, our sponsoring 
editor, now Editor-in-Chief, Physical Sciences, who always found a 
way to keep us focused on our goal. Coleen Morrison, Program Man-
ager, kept us organized and on schedule, juggling disparate elements 
in this complex project. Jay McElroy, Art Development Editor, was 
our intermediary with the talented artists at Imagineering, Inc., and 
displayed considerable artistic and editorial gifts in his own right. 
Over the course of the project, we worked with three experienced de-
velopment editors—Dan Schiller, John Murdzek, and Erica Pantages  
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Frost. Their edits, insights, and attention to detail were invaluable. 
Beth Sweeten, Senior Project Manager, coordinated the production 
of the main text and preparation of the Solutions Manual for the end-
of-chapter problems. Gary Carlton provided great assistance with 
many of the illustrations. Chris Hess provided the inspiration for the 
US  edition’s cover illustration, and Stephen Merland helped us locate 
much excellent illustrative material. Once the book was in produc-
tion, Francesca  Monaco skillfully kept us all on a complex schedule.

The three of us give special thanks to friends and colleagues who 
provided unpublished material for us to use as illustrations. These con-
tributors include John S. Olson (Rice University), Jack Benner (New 
England BioLabs), Andrew Karplus (Oregon State University), Scott 
Delbecq and Rachel Klevit (University of Washington), William Hor-
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where N0 is the number of radioactive atoms at time zero, N is the 
number remaining at time t, and l is a radioactive decay constant for 
a particular isotope, related to the intrinsic instability of that isotope. 
According to this equation, the fraction of nuclei in a population that 
decays within a given time interval is constant. For this reason, a 
more convenient parameter than the decay constant l is the half-life, 
t1/2, the time required for half of the nuclei in a sample to decay. �e 
half-life is equal to -ln 0.5/l or +0.693/l. �e half-life, like l, is an 
intrinsic property of a given radioisotope (see Table 11B.1).

�e basic unit of radioactive decay is the curie (Ci). �is unit is 
de�ned as an amount of radioactivity equivalent to that in 1 g of  
radium—speci�cally, 2.22 * 1012 disintegrations per minute (dpm). 
�e most widely used method for measuring b-emissions is liquid 
scintillation counting. �e sample is dissolved or suspended in an 
organic solvent containing one or two �uorescent organic compounds, 
or �uors. A b-particle emitted from the sample has a high probability of 
hitting a molecule of the solvent. �is contact excites the solvent mol-
ecule, boosting an electron to a higher energy level. When that electron 
returns to the ground state, a photon of light is emitted. �e photon is 
absorbed by a molecule of the �uor, which in turn becomes excited. A 
photomultiplier detects the �uorescence and for each disintegration 
converts it to an electrical signal, which is recorded and counted.

Nuclear Magnetic Resonance
In recent years, nuclear magnetic resonance (NMR) spectroscopy  
has become widely available for noninvasive monitoring of intact 
cells and organs. As explained in Tools of Biochemistry 6A, 
 compounds  containing certain atomic nuclei can be identi�ed 
from an NMR spectrum, which measures shi�s in the frequency of 
absorbed electromagnetic radiation. A researcher can determine an 
NMR spectrum of whole cells, or of organs or tissues in an intact 
plant or animal. NMR has even become a powerful noninvasive 
diagnostic tool, referred to as magnetic resonance imaging (MRI) 
in the medical arena.

For the most part, macromolecular components do not contrib-
ute to the spectrum, nor do compounds that are present at less than 
about 0.5 mM. �e nuclei most commonly used in this in vivo tech-
nique are 1H, 31P, and 13C (Table 11B.1). FIGURE 11B.1 shows 31P NMR 
spectra that represent components in the human forearm muscle. �e 
�ve major peaks correspond to the phosphorus nuclei in orthophos-
phate (Pi), creatine phosphate, and the three phosphates of ATP. 
Because peak area is proportional to concentration, the energy status 
of intact cells can be determined. For example, an energy-rich muscle 
has lots of creatine phosphate, whereas a fatigued muscle uses up 
most of its creatine phosphate in order to maintain ATP levels (note 
also the accumulation of AMP—peak 6—in the third scan). NMR is 
�nding wide applicability in monitoring recovery from heart attacks, 
in which cellular ischemia (insu�cient oxygenation) damages cells 
by reducing ATP content. NMR can also be used to study metabolite 
compartmentation, �ux rates through major metabolic pathways, and 
intracellular pH.
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FIGURE 11B.1
The effect of anaerobic exercise  
on 31P NMR spectra of human forearm 
muscle. Peak areas are proportional to 
intracellular concentrations. See Tools of 
Biochemistry 6A for the interpretation of 
NMR spectra. Courtesy of Dean Sherry, Craig 
Malloy and Jimin Ren of University of Texas-

Southwestern Medical Center.
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11B Radioactive and Stable IsotopesTOOLS OF
BIOCHEMISTRY 

Radioisotopes revolutionized biochemistry when they became avail-
able to investigators shortly a�er World War II. Radioisotopes ex-
tend—by orders of magnitude—the sensitivity with which chemical 
species can be detected. Traditional chemical analysis can detect and 
quantify molecules in the micromole (10-6 mole) or nanomole (10-9 
mole) range. A compound that is “labeled,” containing one or more 
atoms of a radioisotope, can be detected in picomole (10-12 mole) or 
even femtomole (10-15 mole) amounts. Radiolabeled compounds are 
called tracers because they allow an investigator to follow speci�c 
chemical or biochemical transformations in the presence of a huge 
excess of nonradioactive material.

Isotopes are di�erent forms of the same element, so they have dif-
ferent atomic weights but the same atomic number. �us, the chemical 
properties of the di�erent isotopes of a particular element are virtually 
identical. Isotopic forms of an element exist naturally, and substances 
enriched in rare isotopes can be isolated and puri�ed from natural 
sources. Most of the isotopes used in biochemistry, however, are 
produced in nuclear reactors. Simple chemical compounds produced 
in such reactors are then converted to radiolabeled biochemicals by 
chemical and enzymatic synthesis.

Although radioisotopes are still commonly used in biochemis-
try, stable isotopes are also used as tracers. For example, the two rare 
isotopes of hydrogen include a stable isotope (deuterium, 2H) and a 
radioactive isotope (tritium, 3H). Of the many uses of stable isotopes 
in biochemical research, we mention three applications here.

  First, incorporation of a stable isotope o�en increases the den-
sity of a material because the rare isotopes usually have higher 
atomic weights than their more abundant counterparts. �is 
di�erence presents a way to separate labeled from nonlabeled 

compounds physically, as in the Meselson–Stahl experiment on 
DNA replication (see Chapter 4).

  Second, compounds labeled with stable isotopes, particularly 13C, 
are widely used in nuclear magnetic resonance studies of molecu-
lar structure and dynamics (see Tools of Biochemistry 6A).

  �ird, stable isotopes are used to study reaction mechanisms. 
�e “isotope rate e�ect” refers to the e�ect on reaction rate of 
replacing an atom by a heavy isotope. As discussed in Chapter 
8, this  e�ect helps to identify rate-limiting steps in enzyme-
catalyzed reactions. TABLE 11B.1 lists information about the 
isotopes, both stable and radioactive, that have found the great-
est use in biochemistry.

The Nature of Radioactive Decay
�e atomic nucleus of an unstable element can decay, giving rise to 
one or more of the three types of ionizing radiation: a-, b-, and g-
rays. Only b- and g-emitting radioisotopes are used in biochemical 
research; the most useful are listed in TABLE 11B.1. A b-ray is an emit-
ted electron, and a g-ray is a high-energy photon. Most biochemical 
uses of radioisotopes involve b emitters.

Radioactive decay is a �rst-order kinetic process. �e probability 
that a given atomic nucleus will decay is a�ected neither by the num-
ber of preceding decay events that have occurred nor by interaction 
with other radioactive nuclei. Rather, it is an intrinsic property of that 
nucleus. �us, the number of decay events occurring in a given time 
interval is related only to the number of radioactive atoms present. 
�is phenomenon gives rise to the law of radioactive decay:

N = N0e-lt

TABLE 11B.1 Some Useful Isotopes in Biochemistry

Isotope Stable or Radioactive Emission Half-Life Maximum Energy (MeV*)

2H Stable b

3H Radioactive b 12.3 years 0.018
13C Stable
14C Radioactive b 5730 years 0.155
15N Stable
18O Stable
24Na Radioactive b (and g) 15 hours 1.39
31P Stable
32P Radioactive b 14.3 days 1.71
35S Radioactive b 87 days 0.167
45Ca Radioactive b 163 days 0.254
59Fe Radioactive b (and g) 45 days 0.46, 0.27
131I Radioactive b (and g) 8 days 0.335, 0.608

*MeV = million electron volts

tooLS of bioChEMiStRy

  tools of biochemistry emphasize our field as an experimental science and highlight the 
most important research techniques relevant to students today.

 8A How to Measure the Rates of Enzyme-Catalyzed 
Reactions 301
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 13A Detecting and Analyzing Protein–Protein 
Interactions 474

 21A Polymerase Chain Reaction 706

 24A DNA Microarrays 785

 24b Chromatin Immunoprecipitation 786

 2A Electrophoresis and Isoelectric Focusing 76

 4A Manipulating DNA 131

 4b An Introduction to X-Ray Diffraction 136

 5A Protein Expression and Purification 163

 5b Mass, Sequence, and Amino Acid Analyses of 
Purified Proteins 170

 6A Spectroscopic Methods for Studying 
Macromolecular Conformation in Solution 210

 6b Determining Molecular Masses and the Number of 
Subunits in a Protein Molecule 217

 7A Immunological Methods 262
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Proteins perform a wide range of cellular functions 
and are macromolecules containing one or more 
polypeptide chains. These polypeptides are polymers of 
a-amino acids linked together via 
amide, or peptide, 
bonds. Three of the 20 
common a-amino acids 
are shown at right; each amino 
acid contains an amine group and 
a carboxylic acid functional group. 
The order of amino acid residues 
in a polypeptide dictates its folding 
into a specific and highly complex 
structure, such as the protein 
ubiquitin shown to the right.

PROTEINS Chapters 5 and 6-Introduction to Proteins

Also called saccharides, they have the simple empirical formula (CH2O)n. Carbohydrates are used diversely in cells, from energy storage 
to structure to cell recognition. The ring forms of monosaccharides are polyalcohols with hemiacetal or hemiketal functional groups. Cyclic 
monosaccharides can be modified in a variety of ways and covalently linked via glycosidic bonds to form highly complex structures. Here 
an N-linked polysaccharide is shown attached to an integral membrane protein.

CARBOHYDRATES Chapter 9-Carbohydrates and Glycans

Nucleic acids are polymers of nucleotides 
linked via phosphodiester bonds. Nucleotides 
are made up of a ribose or deoxyribose sugar 
with an aromatic nitrogenous base attached. 
These bases display hydrogen bond donors 
and acceptors which interact in a 
complementary fashion between the two 
strands of the double helix. This base-pairing 
complementarity establishes the mechanism to 
maintain the fidelity of genetic information. 
Individual nucleotides, such as ATP, can also 

function as energy 
transfer 
molecules. 

NUCLEIC ACIDS Chapter 4-Nucleic Acids

Lipids are water-insoluble biomolecules that include 
phospholipids, steroids, and fatty acids. Cell 
membranes are largely composed of bilayers of 
glycerophospholipids. A glycerophospholipid 
monomer contains two long aliphatic chains linked to 
a glycerol-3-phosphate backbone via an ester 
linkage, and a polar group such as choline 
connected to the phosphoryl group. The aliphatic 
tails interact with each other to form the hydrophobic 
bilayer, while the polar head groups interact with the 
aqueous environments on either side of the cell 
membrane.

LIPIDS Chapter 10-Lipids, Membranes, and Cellular Transport

Cells constitute the fundamental unit of life. They carry genetic information in the form of 
DNA, respond to external stimuli, and reproduce through cell division. Although extremely 
complex systems, cellular components are assembled from four major categories of 
molecules: lipids, proteins, carbohydrates, and nucleic acids. These molecules are 
organic molecules; they primarily contain the elements C, H, O, N, P and S, and contain 
common organic functional groups such as esters, amides, alcohols, disulfides and 
aromatic rings. A central theme of biochemistry is that function is determined by 
structure. The cellular functions of these various classes of molecules are dictated by 
their structures and the organic functional groups they contain.

CELLS ARE COMPOSED OF ORGANIC MOLECULES.
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for Biochemistry
MasteringChemistry® for Biochemistry provides select end-of-chapter problems 

and feedback-enriched tutorial problems, animations, and interactive �gures to 
deepen your understanding of complex topics while practicing problem solving.

FOUNDATION FIGURE | Biomolecules: Structure and Function 

founDAtion fiGuRES

  foundation figures integrate core chemical and biological connections visually and provide a way to 
organize the complex and detailed material intellectually, thus making relationships among key concepts 
clear and easier to study.
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 2 Protein Structure and Function 220
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 4 Enzyme Kinetics and Drug Action 398

 5 Intermediary Metabolism 510

 6 Cell Signaling and Protein Regulation 682

 7 Antibody Diversity and Use as Therapeutics 760

 8 Information Flow in Biological Systems  844
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Amino Acid and Nitrogen 
Metabolism

Thus far our study of metabolism has concerned itself primarily 

with compounds that can be degraded completely to carbon 

dioxide and water—in other words, compounds containing only 

carbon, hydrogen, and oxygen. In this chapter and the next,  we 

turn to the metabolism of nitrogen-containing compounds—

amino acids and their derivatives, nucleotides, and the polymeric 

nucleic acids and proteins (FIGURE 18.1). Unifying principles of 

amino acid and nitrogen metabolism are presented in this 

chapter, and nucleotide metabolism is covered in Chapter 19.

This chapter  describes how cells assimilate nitrogen, common 

routes for utilizing and excreting ammonia, and coenzymes used 

in nitrogen metabolism. We will outline the metabolism of the 

20 standard amino acids, focusing on the fates and sources 

of their carbon skeletons. Our approach is to organize these 

amino acids into families that are metabolically 

related. Finally, we will mention some of the 

major roles of amino acids as precursors to 

hormones, vitamins, coenzymes, porphyrins, 

pigments, and neurotransmitters.

Chapter 18

 18.1 Utilization of Inorganic Nitrogen: 
The Nitrogen Cycle

 18.2 Utilization of Ammonia: 
Biogenesis of Organic Nitrogen

 18.3 The Nitrogen Economy and 
Protein Turnover

 18.4 Coenzymes Involved in Nitrogen 
Metabolism

 18.5 Amino Acid Degradation and 
Metabolism of Nitrogenous End 
Products

 18.6 Pathways of Amino Acid 
Degradation

 18.7 Amino Acid Biosynthesis

 18.8 Amino Acids as Biosynthetic 
Precursors
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The pigments in butterfly wings are based on a class of nitrogen-rich heterocylic 
compounds called pteridines. In fact, pteridines are named after the Greek pteron 
(“wing”). Pteridine is also a component of folic acid, a central coenzyme in amino 
acid metabolism.

Biochemistry: concepts and connections engages students in the rapidly evolving field 
of biochemistry, better preparing them for the challenges of 21st century science through quantitative 
reasoning skills and a rich, chemical perspective on biological processes.  

visually 
compelling 
chapter openers 
show the 
relevancy of the 
material to draw 
students into 
biochemistry at 
every turn.

This concise first edition teaches mixed-science  
majors the chemical logic underlying the mechanisms, 
pathways, and processes in living cells through ground-
breaking biochemical art and a clear narrative which 
illustrates biochemistry’s relation to all other life sciences. 
integration of biochemistry’s experimental underpinnings 
alongside modern techniques, encourages students to 
consider how their understanding of biochemistry can, and 
will, contribute to solving problems in medicine, agricultural 
sciences, environmental sciences, and forensics.

The text is fully integrated with masteringchemistry® to 
provide support for students before, during, and after class. 
highlights include interactive animations and tutorials 
based on the textbook’s biochemical art program. 
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an innovative visual narrative teaches Biochemical 
details while reinforcing over-arching themes of chemical logic, 
regulation, and the interface between chemistry and biology to help 
students see the bigger picture.

▼  figure 3.10: bioenergetic calculations mapped to three-dimensional 
structures create a visual and mathematical overview of selected 
cellular processes. integrated text explains specifics of how the 

equations are linked 
to physical elements 
within a cell.
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NADH is oxidized in mitochondria in a 
multistep electron transport process that 
produces a proton chemical gradient.

Newly synthesized protein 
spontaneously folds into its 
active structure (hexokinase 
is shown here).

Hexokinase catalyzes the first 
step in the glycolytic pathway. 
The hexokinase reaction 
consumes ATP; however, the 
glycolytic pathway produces 
ATP in subsequent steps.

ATP is consumed in large amounts 
during ribosomal protein synthesis. 
For a protein of 250 amino acids, 
~750 ATP will be converted to ADP. 

Free energy stored in the proton gradient 
drives the regeneration of ATP from ADP 
by the ATP synthase complex.

The glucose is 
ultimately 
converted to CO2 
via multistep 
pathways that 
produce NADH.
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figure 2.18: several layers of information (surface charge, ph, and how 
the charges are distributed across a three-dimensional protein) are 
combined in an easy to follow format to explain the effect of ph on overall 
surface charge. annotations reinforce the major concepts.

Groundbreaking Biochemical Art

▲
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figure 14.12: detailed molecular models lend interest 
and realism to microscopic processes. here, proteins 
in the inner mitochondrial membrane give context 
to electron flow in a portion of the respiratory chain. 
vibrant color-coded arrows make multiple pathways 
clear and understandable. ▼

◀  figure 11.2: major biochemical themes such as 
intermediary metabolism are presented as carefully 
designed reference charts connecting relevant 
concepts from multiple chapters. These flow 
charts enable students to visualize the big picture 
and think about relationships while referring to 
chapter text for detailed descriptions.

KEY

Catabolic
pathway

Anabolic
pathway

Electron flow

Oxidized
electron carriers

(NAD1, FAD)

Reduced
electron carriers
(NADH, FADH2)

Photosynthesis

Light
energy

Electron
transport

Lipids Nucleic acids Proteins

NucleotidesFatty acids

Glycerol

Monosaccharides

Glucose

Pyruvate

CITRIC
ACID

CYCLE

Acetyl-CoA

Glyceraldehyde-
3-phosphate

Polysaccharides

Amino acids

ATP

ADP
Oxidative

phosphorylation
+ Pi

CO2

O2

NH3

H2O

G
L

U
C

O
N

E
O

G
E

N
E

S
IS

G
LY

C
O

LY
S

IS

1

2

3

Groundbreaking Biochemical Art

A01_MATH2008_01_SE_FM.indd   27 06/03/15   5:28 PM



interactive Foundation Figures integrate core chemical and biological connections 
visually and provide a way to organize highly complex and detailed material, making 
biochemistry more manageable, understandable, and easier to synthesize. These figures will 
have dedicated questions for use in class via learning catalytics™ and will also be assignable in 
masteringchemistry® as step-wise animations with follow-up assessment. 

INSULIN

Under conditions of high blood glucose, the pancreatic b-cells secrete the hormone insulin. Insulin binds to its receptor 
on the liver cell, causing autophosphorylation and activation of the receptor. Activation of the insulin signaling pathway 
(section 20.3) leads to activation of two main proteins– pAKT, and Ras. Dephosphorylated PFK2/FBPase2 increases 
glycolysis while decreasing gluconeogenesis (see Chapter 12). These two activities of insulin (increased glucose 
transport into cells, and increased glucose utilization) result in an overall decrease in the levels of blood glucose.

Integrating signaling and metabolism. This figure shows how different inputs, each acting via 
a different signaling mechanism, can regulate metabolism in a liver cell. The dual function 
enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBPase2) is a key 
regulator of glycolysis and gluconeogenesis (see Chapter 12). Blood glucose levels are 
maintained by signaling cascades initiated by the hormones insulin and glucagon (see 
Chapters 17 and 20), which regulate PFK2/FBPase2 activity by dephosphorylation and 
phosphorylation, respectively. In addition, transcriptional regulation of PFK2/FBPase2 (and 
other glycolytic enzymes) by the HIF-1a transcription factor allows for increased glycolysis 
during hypoxic conditions. We see here one example of how metabolism can be adjusted in 
response to different conditions by different signaling mechanisms. Similar kinds of signal 
integration lead to the appropriate regulation of all the activities in a cell, and coordination of 
functions across the entire organism.

HIF-1a is a transcription factor. Normally, HIF-1a is broken down by ubiquitination 
and proteosomal degradation. However, in hypoxic conditions, signaling through 
a receptor tyrosine kinase (RTK) pathway leads to inactivation of the machinery 
that degrades HIF-1a. This pathway is particularly relevant in the formation of 
tumors, when cancer cells do not have sufficient blood supply, and overcome 
these hypoxic conditions by increasing glycolysis via the HIF-1a pathway.

HIF-1a is transported into the nucleus, where it can 
increase the transcription of its target genes, some 
of which are enzymes of glycolysis. Thus, under 
hypoxic conditions, the cell can meet its energy 
demands by increasing glycolysis.

Ras activation leads to 
MAPK signaling, which 
causes upregulation of 
certain genes and 
dephosphorylation of 
PFK2/FBPase2.

Increased GLUT4 leads 
to increased uptake of 
glucose into the cells.

When PFK-2 is inactive, (and FBPase-2 
is active), glycolysis is inhibited and 
gluconeogenesis is stimulated.

When PFK-2 is active (and FBPase-2 
is inactive), glycolysis is stimulated 
and gluconeogenesis is inhibited.

pAKT activation has several 
cellular effects, one of which 
is the increased transport of 
the GLUT4 transporter onto 
the cell surface.

GLYCOGENOLYSIS

Glucagon acts on a seven
transmembrane G-protein coupled 
receptor to activate Ga. Active Ga 
binds to, and activates the enzyme 
adenylate cyclase. Adenylate 
cyclase causes an increase in 
cyclic AMP (cAMP), which binds to 
PKA, and activates it.
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When blood glucose levels are low, liver cells are stimulated to secrete 
glucose by upregulating glucose release from glycogen and the reciprocal 
regulation of gluconeogenesis and glycolysis. Low blood glucose levels lead 
to secretion of the hormone glucagon. Glucagon acts via a seven 
transmembrane G protein-coupled receptor to ultimately activate protein 
kinase A (PKA) by increasing levels of the second messenger cAMP 
(section 20.2). PKA then phosphorylates PFK2/FBPase2, resulting in 
decreased glycolysis and increased gluconeogenesis. PKA also stimulates 
(via phosphorylase b kinase) phosphorylation of the enzyme phosphorylase b , 
leading to increased glycogenolysis (see Chapter 12). The glucose produced 
by gluconeogenesis and glycogenolysis is then transported into the blood to 
maintain blood glucose levels.

CELL SIGNALING AND PROTEIN REGULATION

FOUNDATION FIGURE | Cell Signaling and Protein Regulation
MasteringChemistry® for Biochemistry provides select end-of-chapter problems 

and feedback-enriched tutorial problems, animations, and interactive �gures to 
deepen your understanding of complex topics while practicing  

problem solving.

for Biochemistry

Interactive Foundation Figures
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INSULIN

Under conditions of high blood glucose, the pancreatic b-cells secrete the hormone insulin. Insulin binds to its receptor 
on the liver cell, causing autophosphorylation and activation of the receptor. Activation of the insulin signaling pathway 
(section 20.3) leads to activation of two main proteins– pAKT, and Ras. Dephosphorylated PFK2/FBPase2 increases 
glycolysis while decreasing gluconeogenesis (see Chapter 12). These two activities of insulin (increased glucose 
transport into cells, and increased glucose utilization) result in an overall decrease in the levels of blood glucose.

Integrating signaling and metabolism. This figure shows how different inputs, each acting via 
a different signaling mechanism, can regulate metabolism in a liver cell. The dual function 
enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBPase2) is a key 
regulator of glycolysis and gluconeogenesis (see Chapter 12). Blood glucose levels are 
maintained by signaling cascades initiated by the hormones insulin and glucagon (see 
Chapters 17 and 20), which regulate PFK2/FBPase2 activity by dephosphorylation and 
phosphorylation, respectively. In addition, transcriptional regulation of PFK2/FBPase2 (and 
other glycolytic enzymes) by the HIF-1a transcription factor allows for increased glycolysis 
during hypoxic conditions. We see here one example of how metabolism can be adjusted in 
response to different conditions by different signaling mechanisms. Similar kinds of signal 
integration lead to the appropriate regulation of all the activities in a cell, and coordination of 
functions across the entire organism.

HIF-1a is a transcription factor. Normally, HIF-1a is broken down by ubiquitination 
and proteosomal degradation. However, in hypoxic conditions, signaling through 
a receptor tyrosine kinase (RTK) pathway leads to inactivation of the machinery 
that degrades HIF-1a. This pathway is particularly relevant in the formation of 
tumors, when cancer cells do not have sufficient blood supply, and overcome 
these hypoxic conditions by increasing glycolysis via the HIF-1a pathway.

HIF-1a is transported into the nucleus, where it can 
increase the transcription of its target genes, some 
of which are enzymes of glycolysis. Thus, under 
hypoxic conditions, the cell can meet its energy 
demands by increasing glycolysis.

Ras activation leads to 
MAPK signaling, which 
causes upregulation of 
certain genes and 
dephosphorylation of 
PFK2/FBPase2.

Increased GLUT4 leads 
to increased uptake of 
glucose into the cells.

When PFK-2 is inactive, (and FBPase-2 
is active), glycolysis is inhibited and 
gluconeogenesis is stimulated.

When PFK-2 is active (and FBPase-2 
is inactive), glycolysis is stimulated 
and gluconeogenesis is inhibited.

pAKT activation has several 
cellular effects, one of which 
is the increased transport of 
the GLUT4 transporter onto 
the cell surface.

GLYCOGENOLYSIS

Glucagon acts on a seven
transmembrane G-protein coupled 
receptor to activate Ga. Active Ga 
binds to, and activates the enzyme 
adenylate cyclase. Adenylate 
cyclase causes an increase in 
cyclic AMP (cAMP), which binds to 
PKA, and activates it.
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When blood glucose levels are low, liver cells are stimulated to secrete 
glucose by upregulating glucose release from glycogen and the reciprocal 
regulation of gluconeogenesis and glycolysis. Low blood glucose levels lead 
to secretion of the hormone glucagon. Glucagon acts via a seven 
transmembrane G protein-coupled receptor to ultimately activate protein 
kinase A (PKA) by increasing levels of the second messenger cAMP 
(section 20.2). PKA then phosphorylates PFK2/FBPase2, resulting in 
decreased glycolysis and increased gluconeogenesis. PKA also stimulates 
(via phosphorylase b kinase) phosphorylation of the enzyme phosphorylase b, 
leading to increased glycogenolysis (see Chapter 12). The glucose produced 
by gluconeogenesis and glycogenolysis is then transported into the blood to 
maintain blood glucose levels.

CELL SIGNALING AND PROTEIN REGULATION

FOUNDATION FIGURE | Cell Signaling and Protein Regulation
MasteringChemistry® for Biochemistry provides select end-of-chapter problems 

and feedback-enriched tutorial problems, animations, and interactive �gures to 
deepen your understanding of complex topics while practicing  

problem solving.

for Biochemistry

Interactive Foundation Figures
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new masteringchemistry for biochemistry provides interactive animations and tutorials based 
on the textbook’s biochemical art program and foundation figures helping students visualize 
complex processes, test conceptual understanding, apply what they have learned to novel 
scenarios, and practice quantitative reasoning. 

ensure students arrive ready to learn by assigning educationally effective content before 
class, and encourage critical thinking and retention with in-class resources such as learning 
catalytics. students can further master concepts after class through traditional homework 
assignments that provide hints and answer-specific feedback. The mastering gradebook 
records scores for all automatically graded assignments while diagnostic tools give instructors 
access to rich data to assess student understanding and misconceptions. 

mastering brings learning full circle by continuously adapting to each student and making 
learning more personal than ever—before, during, and after class. 

dynamic study modules
dynamic study modules (dsms) enable 
your students to study the required organic 
chemistry  and fundamental biochemistry 
concepts effectively on their own  in order to 
be better prepared for higher-order learning 
in class. These modules can be completed 
on smartphones, tablets, or computers and 
assignments will automatically be synced to the 
masteringchemistry gradebook. 

reading Quizzes
reading Quizzes give instructors 
the opportunity to assign reading and 
test students on their comprehension of 
chapter content.

BeFore class
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